স্বাভাবিক সংখ্যা ও ভগ্নাংশ অনুপাত ও শতকরা
পাঠ
অংক
সংখ্যা লিখতে ব্যবহৃত সাংকেতিক চিহ্নগুলোকে অঙ্ক বলে। অঙ্কের মাধ্যমেই সংখ্যা গঠিত হয়। ০ থেকে ৯ পর্যন্ত সংখ্যাগুলোকে অঙ্ক বলা হয়।
অঙ্কের বৈশিষ্ট্যঃ
- অঙ্ক হল সংখ্যা পদ্ধতিতে ব্যবহৃত মৌলিক চিহ্ন।
- অঙ্ক হল সংখ্যা তৈরির ক্ষুদ্রতম প্রতীক।
- এক বা একাধিক অঙ্ককে একত্রে সংখ্যা বলে।
অঙ্কের উদাহরণঃ ০, ১, ২, ৩, ৪, ৫, ৬, ৭, ৮, ৯
অংক দুই প্রকার। যথাঃ
ক) সার্থক অংক। যেমনঃ ১,২,৩,৪,৫,৬,৭,৮,৯
খ) সাহায্যকারী বা সহকারী অংক। যেমনঃ ০ (শূন্য)।
অংকপাতন
পাটিগণিতে দশটি প্রতীক দ্বারা সব সংখ্যা প্রকাশ করা যায়। এ প্রতীক গুলো হলোঃ ১,২,৩,৪,৫,৬,৭,৮,৯,০ । এগুলোকে অঙ্ক বলা হয়। আবার এগুলো সংখ্যাও। শূন্য ব্যতীত বাকি সংখ্যা গুলো স্বাভাবিক সংখ্যা। এদের মধ্যে প্রথম নয়টি প্রতীককে সার্থক অঙ্ক এবং শেষেরটিকে শূন্য বলা হয়।
সংজ্ঞাঃ কোনো সংখ্যা অংক দ্বারা লেখাকে অঙ্কপাতন বলে।
অঙ্ক পাতনে দশটি প্রতীকই ব্যবহার করা হয়। দশ ভিত্তিক বলে সংখ্যা প্রকাশের রীতিকে দশমিক বা দশ গুণোত্তর রীতি বলা হয়।
সংখ্যা
সংখ্যা হলো এক বা একাধিক অঙ্কের সমন্বয়ে তৈরি একটি মান, যা কোনো পরিমাণ বা গণনার সূচক। যেমন, ৭, ৩৫, ১০২ — এগুলো সংখ্যা, যেখানে বিভিন্ন অঙ্ক (যেমন ৩ এবং ৫, ১ এবং ০ এবং ২) একত্রিত হয়ে সংখ্যা তৈরি করে।
মৌলিক সংখ্যাঃ যে সংখ্যাকে অন্য কোন সংখ্যা দ্বারা ভাগ করা যায় না, তাকে মৌলিক সংখ্যা বলে।
যৌগিক সংখ্যাঃ যে সংখ্যার ১ ও ঐ সংখ্যাটি ছাড়াও কমপক্ষে আরেকটি উৎপাদক আছে তাকে যৌগিক সংখ্যা বলে।
নোটঃ ১ কে মৌলিক ও কৃত্রিম এদের কোন শ্রেণীর অন্তর্ভুক্ত করা হয় না।
ভগ্নাংশঃ দুইটি পূর্ণ সংখ্যাকে ভাগ বা অনুপাত আকারে প্রকাশ করলে যে রাশি পাওয়া যায় তাকে ভগ্নাংশ বলে।
পূর্ণসংখ্যাঃ যেসমস্ত সংখ্যার কোন ভগ্নাংশ থাকে না তাদের বলে পূর্ণ সংখ্যা। যেমন: ১, -৫, ১২ ইত্যাদি।
মূলদ সংখ্যাঃ যে সব সংখ্যাকে সামান্য ভগ্নাংশে প্রকাশ করা যায় অথচ হরের মান শূন্য নয় তাদেরকে মূলদ সংখ্যা বলে।
বাস্তব সংখ্যাঃ শূন্য সহ সকল মূলদ এবং অমূলদ সংখ্যাকে বাস্তব সংখ্যা বলে।
অমূলদ সংখ্যাঃ যে বাস্তব সংখ্যাকে দুটি পূর্ণ সংখ্যার অনুপাতে প্রকাশ করা যায় না তাকে অমূলদ সংখ্যা বলে।
স্বাভাবিক সংখ্যাঃ শূন্য থেকে বড় সকল পূর্ণ সংখ্যাকে স্বাভাবিক সংখ্যা বা ধনাত্মক অখণ্ড সংখ্যা বলে ।
গ.সা.গু.
গ.সা.গু. এর পূর্ণরূপ হলো গরিষ্ঠ সাধারণ গুণনীয়ক । এটি হলো দুই বা ততোধিক সংখ্যার সবচেয়ে বড় সাধারণ গুণনীয়ক, অর্থাৎ এমন একটি বৃহত্তম সংখ্যা যাকে ওই সংখ্যাগুলো দিয়ে নিঃশেষে ভাগ করা যায়।
সংজ্ঞাঃ দুই বা ততোধিক রাশির অন্তর্গত সর্বোচ্চ সংখ্যক সাধারণ মৌলিক গুণনীয়কের ধারাবাহিক গুণফলকে ঐ রাশিগুলোর গরিষ্ঠ সাধারণ গুণনীয়ক বা গ. সা. গু বলে।
গ.সা.গু. (গরিষ্ঠ সাধারণ গুণনীয়ক) নির্ণয়ের প্রধানত দুটি পদ্ধতি রয়েছে: মৌলিক উৎপাদক বিশ্লেষণ পদ্ধতি এবং ভাগ পদ্ধতি (ইউক্লিডীয় অ্যালগরিদম)।
গরিষ্ঠ শব্দের অর্থ বৃহত্তম বা সবচেয়ে বড়।
‘ল.সা.গু’
‘ল.সা.গু’ বলতে লঘিষ্ঠ সাধারণ গুণিতক বোঝানো হয়, যা হলো দুটি বা ততোধিক সংখ্যার মধ্যে ক্ষুদ্রতম সংখ্যা যা তাদের প্রত্যেকের দ্বারা নিঃশেষে বিভাজ্য। এটি একটি মৌলিক গাণিতিক ধারণা, যেখানে আমরা এমন একটি ক্ষুদ্রতম সংখ্যা খুঁজে বের করি যা প্রদত্ত সংখ্যাগুলোর সাধারণ গুণিতক।
সংজ্ঞাঃ দুই বা ততোধিক সংখ্যার সাধারণ গুণিতকগুলির মধ্যে যে গুণিতকটি ক্ষুদ্রতম, তাকে প্রদত্ত সংখ্যাগুলির ল.সা.গু. বা লঘিষ্ঠ সাধারণ গুণিতক বলে।
লঘিষ্ঠ শব্দের অর্থ ক্ষুদ্রতম বা সবচেয়ে ছোট।
ভগ্নাংশ
ভগ্নাংশ শব্দটির সংস্কৃত ভাষা থেকে এসেছে যাকে ইংরেজিতে বলে Fraction। ভগ্নাংশ শব্দটি বাংলা শব্দ ভগ্ন অর্থাৎ’’ ভাঙ্গা বা বিচ্ছিন্ন’’ এবং আংশ অর্থাৎ ‘’অংশ’’ । ভগ্নাংশ শব্দের অর্থ হচ্ছে ভাঙ্গা অংশ অথবা বিচ্ছিন্ন অংশ।
সংজ্ঞাঃ দুইটি পূর্ণ সংখ্যাকে ভাগ বা অনুপাত আকারে প্রকাশ করলে যে রাশি পাওয়া যায় তাকে ভগ্নাংশ বলে।
উদাহরণ, মনে করি , X এবং Y দুটি পূর্ণ সংখ্যা তাহলে ভগ্নাংশ হবে X/Y
ভগ্নাংশ সাধারণত দুই প্রকার । যথাঃ
১. সাধারণ ভগ্নাংশ
২. দশমিক ভগ্নাংশ
সাধারণ ভগ্নাংশঃ
লব হর নিয়ে গঠিত ভগ্নাংশই হল সাধারণ ভগ্নাংশ। যেমনঃ ৫/৮,২/৩,১/৫ ইত্যাদি
দশমিক ভগ্নাংশঃ
যে সকল ভগ্নাংশকে দশমিক চিহ্নের সাহায্য প্রকাশ করা হয় তাকে দশমিক ভগ্নাংশ বলে। যেমনঃ ২.৫, ৩.২, ৬.৯ ইত্যাদি।
আবার, আকৃতি, প্রকৃতি ও হর অনুসারে ভগ্নাংশকে ভাগ করা হয়েছে —
আকৃতি অনুসারে ভগ্নাংশ তিন প্রকার।
- সরল ভগ্নাংশ
- জটিল ভগ্নাংশ
- যৌগিক ভগ্নাংশ
সরল ভগ্নাংশ
যে সকল ভগ্নাংশ শুধুমাত্র স্বাভাবিক সংখ্যার লব ও হর নিয়ে গঠিত তাকে সরল ভগ্নাংশ বলে। যেমনঃ ২/৫,৭/৩
জটিল ভগ্নাংশ
ভগ্নাংশের লব অথবা হর অথবা উভয়ই ভগ্নাংশ হয় তাকে জটিল ভগ্নাংশ বলে। যেমনঃ ১/২/৩, ২/৩/২
যৌগিক ভগ্নাংশ
ভগ্নাংশের ভগ্নাংশকে যৌগিক ভগ্নাংশ বলা হয়। যেমনঃ ১/২ এর ৭/৫, ২/৫ এর ৭/১১
প্রকৃতি অনুসারে ভগ্নাংশ তিন প্রকার।
- প্রকৃত ভগ্নাংশ
- অপ্রকৃত ভগ্নাংশ
- মিশ্র ভগ্নাংশ
প্রকৃত ভগ্নাংশ
যে ভগ্নাংশের লব, হরের চেয়ে ছোট হয় সেই ভগ্নাংশকে প্রকৃত ভগ্নাংশ বলে। যেমনঃ ১/৫, ১৩/১৭ এবং ৫/১৮।
অপ্রকৃত ভগ্নাংশ
যে ভগ্নাংশের লব, হরের চেয়ে বড় হয় সেই ভগ্নাংশকে অপ্রকৃত ভগ্নাংশ বলে। যেমনঃ ৭/৩, ১৭/১৩ এবং ১৮/৫।
মিশ্র ভগ্নাংশ
যদি কোন ভগ্নাংশ পূর্ণ সংখ্যা ও প্রকৃত ভগ্নাংশ দ্বারা গঠিত হয় তবে তাকে মিশ্র ভগ্নাংশ বলে। যেমনঃ ১-৫/৮, ৩-১/৭ ইত্যাদি
হর অনুসারে ভগ্নাংশ দুই প্রকার।
- সমহর বিশিষ্ট ভগ্নাংশ
- অসমহর বিশিষ্ট ভগ্নাংশ
সমহর বিশিষ্ট ভগ্নাংশ
যদি একাধিক ভগ্নাংশের হর একই বা সমান হয় তাহলে তাকে সমহার বিশিষ্ট ভগ্নাংশ বলে। যেমনঃ ১/৫, ২/৫, ৪/৫ ইত্যাদি
অসমহর বিশিষ্ট ভগ্নাংশ
একাধিক ভগ্নাংশের বিভিন্ন ধরনের হর বিশিষ্ট ভগ্নাংশকে অসমহার বিশিষ্ট ভগ্নাংশ বলে। যেমনঃ ১/২, ৩/৪, ৬/৭ ইত্যাদি।
দশমিক
দশমিক একটি সংখ্যা পদ্ধতি যা ১০ কে ভিত্তি হিসাবে ব্যবহার করে, যেখানে দশমিক বিন্দু ব্যবহার করে পূর্ণ সংখ্যা এবং ভগ্নাংশকে আলাদা করা হয়।
দশমিক বিন্দু:
দশমিক সংখ্যায় একটি বিন্দু থাকে যা একটি পূর্ণ সংখ্যা এবং একটি ভগ্নাংশকে আলাদা করে।